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1. Introduction 
 

A majority of the nuclear power plants in operation in 

the United States of America (USA), were built in the 

1960s, 1970s, and 1980s, and they have made a large 

contribution to the generation of the power used in this 

country (Hill 2018). Despite the large energy contribution 

of nuclear power plants in the US, they have several 

disadvantages. Nuclear power plants are required to meet 

high-level safety standards. In addition, they face the 

challenge of the safe containment of spent fuel byproducts, 

which must be continually reassessed to prevent 

environmental release. The current long-term plan for spent 

nuclear fuel is geological repositories. There are two 

temporary alternatives to preserve the spent nuclear fuel 

until the long-term facilities are constructed. They are 

cooling pools and dry cask storage systems (DCSS). DCSSs 

have been utilized since the 1970s and 1980s (Hill 2018). 

The stainless-steel canisters encase the used fuel and high-

level waste in an environment which is filled by an inert 

gas. DCSSs are sealed by welding and protected by an 

external reinforced concrete overpack to avert any potential 

radiation transmission to humans. The welding on the 

storage containers causes austenitic materials to become 

sensitized when Carbon settles between intergranular 

boundaries and causes chromium carbide precipitation, 

which removes the chromium from the intergranular 

boundaries. This reaction makes steel more susceptible to 

SCC. In coastal region where there is high humidity, there is 

 

Corresponding author, Mahmoud Bayat 

E-mail: mbayat14@yahoo.com; mbayat@mailbox.sc.edu 
a Postdoctoral Fellow 

E-mail: vafa@email.sc.edu 
b B. Geer 

E-mail: bgreer@epri.com 
c Professor 

E-mail: ziehl@cec.sc.edu 

 

 

greater potential for the environmental conditions to be 

conducive to the degradation of the DCSSs. 
Many DCSSs were initially licensed for a 20-year 

operation. At this point in time, many of the original 
licenses are approaching expiration (Hill 2018). The 
licenses can only be extended through inspections to verify 
the structural operability for a desired future time frame. 
One traditional method is visual inspection. The visual 
inspection of the DCSSs is time-consuming, expensive, 
subjective, and challenging due to limited access to the 
surface while stored inside the concrete overpack. Many 
researches have been done also on the numerical modeling 
of structures to capture and considering their damage and 
preparing a damage model (Mahdavi et al. 2019, Bayat et 
al. 2019, Khorshidi et al. 2014, Ahmadi et al. 2018, Ahmadi 
et al. 2105, Bayat et al. 2019, Dastjerdi et al. 2018, 
Gholizadeh et al. 2015, Hakan 2008, Kainuma et al. 2018, 
Mirfakhraei et al. 2020). 

 Acoustic emission is proposed as an alternative method 
to identify and quantify damages caused by stress corrosion 
cracking (SCC). Acoustic emission (AE) is a structural 
health monitoring technique. This method is very sensitive, 
nondestructive, and has an ability for continuous 
monitoring. It has already been utilized for the 
identification of damage in reinforced concrete structures 
affected by alkaline silica reaction (Soltangharaei et al. 
2018), cement paste (Soltangharaei et al. 2018), and 
concrete structures under loading (Forde et al. 2016). 
Moreover, it has been used for the health monitoring of 
steel structures such as steel bridges (Holford et al. 2001, 
Roberts and Talebzadeh 2003, Yu et al. 2011). 

Several researchers have investigated different types of 
corrosion using AE (Mazille et al. 1995, Fregonese et al. 
2001, Kim et al. 2003, Shaikh et al. 2007, Alvarez et al. 
2008, Lee et al. 2008, Calabrese et al. 2010, Jirarungsatian 
and Prateepasen 2010, Du et al. 2011, Xu et al. 2011, Xu et 
al. 2012, Xu et al. 2013, Hwang et al. 2015, Kovač et al. 
2015, Wu et al. 2015, Morizet et al. 2016). Xu et al. (2011) 
investigated pitting corrosion in 304 stainless with various 
PH values using AE. They found that the main AE source 
was bubble formation and more AE activities were emitted 
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from a specimen exposed to a lower concentration solution. 

Mazille et al. (1995) also utilized AE technique to 

investigative pitting corrosion in AISI 316L austenitic 

stainless steel. They found that the corrosion rate has a 

correlation with AE data. Fregonese et al. (2001) studied 

the development of pitting corrosion in AISI 316L 

austenitic stainless steel by using AE technique. They 

observed that the AE activity shows the development of the 

pits in the form of occluded cells, and there were not 

significant AE activities at the initial stage of corrosion. 

Jirarungsatian et al. (2010) proposed to use the duration and 

frequency of AE signals to classify the data emitted from 

pitting and uniform corrosion process.  

Some researchers have focused on SCC (Shaikh et al. 

2007, Alvarez et al. 2008, Du et al. 2011, Xu et al. 2012, 

Kovač et al. 2015). Xu et al. (2012) utilized acoustic 

emission to study stress corrosion cracking in 304 stainless 

steel during constant load and in a high-temperature 

aqueous environment. They attributed the high amplitude 

signals to the crack propagation and the low amplitude 

signals to plastic deformations. They (Xu et al. 2013) also 

found that the fracture mode for stress corrosion cracks in 

the sensitized 304 stainless steel was a combination of 

intergranular and transgranular cracking. Alvarez et al. 

(2008) studied the AE signals generated by transgranular 

and intergranular SCC in sensitized type AISI 304 stainless 

steel samples. They observed that the AE activities during 

the propagation of transgranular SCC is much higher than 

the AE activity during the intergranular SCC. Du et al. 

(2011) studied the corrosion of 304 stainless steel in an 

acidic NaCl solution during a slow strain rate tensile test 

using the electrochemical noise and acoustic emission 

techniques. The AE data was classified according to their 

frequency distributions. The signals with a frequency 

between 250 to 320 kHz were recognized as the cracking 

signals. Shaikh et al. (2007) evaluated stress corrosion 

cracking of AISI type 316LN stainless steel using AE. They 

observed that AE was continuous before crack initiation and 

AE rate decreased after crack initiation and propagation.  

In this study, unsupervised pattern recognition was 

conducted by using frequency-energy based features. A 

source location algorithm was employed to verify the AE 

sources. Furthermore, the resulting clusters were localized 

to identify the AE signal signatures caused by SCC under 

 

 

constant bending stress in a stainless-steel plate. 

Incremental and Global b-value analyses were conducted 

for damage identification and quantification during the 

SCC. A method based on linear regression is proposed as a 

damage quantification and identification index. This study 

is an initial part of the project for damage detection and 

quantification of DCSSs affected by SCC to evaluate the 

structural qualification for license extension.    

 

 

2. Test setup and experimental procedure  
 

A 304H stainless steel plate was prepared and sensitized 

for an SCC test. In many nuclear applications, 304 L 

stainless steel is used, however 304H stainless steel was 

tested in this paper due to the higher carbon content of the 

material which would mean a faster sensitization process 

leading to a shorter heat treatment duration. The steel plate 

was 305 mm (12 inches) by 311 mm (12.25 inches) and 16 

mm (0.625 inches) thick. The sensitization process was 

conducted by exposing the steel plates to a temperature of 

675oC (1250oF) for 14 hours in a vacuum furnace. The 

carbon in the material bonds with chromium and forms 

carbides in the grain boundaries, this reduces the 

concentration of chromium near the grain boundaries and 

makes the steel more susceptible to intergranular SCC. The 

metallographic pictures of the sensitization process after 2 

hours and at the completion of the process (14 hours) are 

presented in Fig. 1. 

A stress concentrating starter notch with the dimensions 

of 12 mm (0.5 in) in length, 0.5 mm (0.02 in) in width, and 

1 mm (0.04 in) in depth was produced in the plate by using 

electrical discharge machining (EDM).  

The specimen was fabricated with two perpendicular 

tabs, welded to the bottom face of the specimens with a hole 

located 76 mm (3 inches) from the bottom face of the plate. 

A 19 mm (0.75 in) bolt with a nut was inserted inside the 

hole and tightened to apply a compressive force to the 

welded tabs. This compressive force created a bending 

moment in the specimens and tension on the surface of the 

plates, thereby exerting stress in the notch. The location of 

the applied force is shown in Fig. 2. The goal for this study 

is stress corrosion crack propagation under the elastic 

region of mechanical behavior of stainless steel in a  

 
(a) Sensitization after 2 hours 

 
(b) Sensitization after 14 hours 

Fig. 1 Metallography during sensitization process at 500 times magnification 

50 µm 50 µm
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reasonable period. Therefore, the compressive force applied 

to the bolt was calculated in a way that the tensile stress on 

the top surface of the plate at the notch location was less 

than the yielding stress of the 304H stainless steel (206 

MPa) Moreover, the stress on the top surface should be 

large enough for crack propagation in a reasonable time 

frame. Therefore, the target stress was set at 186 MPa, 

which was the 90% of the yielding stress. Two strain gauges 

(Micro-Measurements 2A-06-250LW-350) were attached 

on the surface of the plates along the bending axis to 

prevent the tensile strain on the surface from exceeding the 

corresponding strain value for the defined target stress. The 

strain data was recorded by a P3 Strain Indicator and 

Recorder manufactured by Micro Measurements. The 

required torque value for fastening the bolt was calculated 

and applied. The test setup is shown in Fig. 2. 

A 1% potassium tetrathionate (K2S4O6) solution was 

used as an electrolyte to provide a corrosive environment 

for the test. In addition, sulfuric acid was utilized to reduce 

the solution’s pH to 3.0, to expedite the corrosion reaction.  

 

 

The solution was placed in a tube container, which was 

attached with silicone on the surface of the plate in the 

middle region of the plate. Six WDI-AST wideband AE 

sensors with a frequency response of 200-900 kHz and two 

resonant R6I-AST AE sensors with a frequency response 

range of 40-100 kHz were attached on the surface of a steel 

plate by using epoxy. The WDI sensors have a peak 

sensitivity of -25 dB with the reference of V/µbar. The 

sensors have the dimensions of 29 mm (diameter) and 30 

mm (height). The R6I sensors have a peak sensitivity of -23 

dB with the reference of V/µbar and the dimensions of 29 

mm (diameter) and 40 mm (height). Both wideband and 

resonant sensors have internal preamplifiers with 40 dB 

gain. The sensitivity curves for the sensors are presented in 

Fig. 3. 

A 16-channel DiSP system manufactured by MISTRAS 

Group, Inc. (Princeton Junction, New Jersey) was utilized 

for a data acquisition. After attaching the sensors on the 

specimen and connecting them to the data acquisition, a 

background noise test was conducted for 24 hours to  

 

 
Fig. 2 Test Setup 

 

 
(a) WDI sensors 

 
(b) R6I 

Fig. 3 Sensitivity curves (MISTRASGroup 2011a and b) 
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determine the noise level in the testing environment. 

Therefore, the amplitude threshold was set to 32 dB in the 

data acquisition system according to the background noise 

test to avoid any potential environmental noise signal. The 

sampling rate for the system was set to 1 MHz. The pre-

trigger time, which is the time before the first threshold 

crossing of a signal that an AE system recovers data, was 

set to 256 µs. This timing parameter is set to make sure; the 

recording system does not miss the time attributed to signal 

initiation. The time for terminating the measurement of the 

AE signals, also known as hit definition time (HDT), was 

set to 400 µs. A signal started to be recorded at the moment 

that its voltage first exceeds the set threshold, and the 

recording is stopped when an amount of time equal to HDT 

has passed without any threshold crossings. The peak 

definition time (PDF), which is utilized to find the peak in a 

signal, was set to 200 µs. In other words, this parameter 

gives some control over which peaks are used for 

calculating rise time and amplitudes, when a signal has 

several peaks. The hit lock time (HLT) is the time at the end 

of a signal to prevent any reflections, was set to 200 µs. 

HLT is a time which any threshold crossing happening 

during this time will not be included in a hit waveform 

(MISTRASGroup (2014)). The sensitivity of external 

sensors and calibration of channels were conducted by 

applying Hsu-Nielsen sources before starting the test (Hsu 

1981). 

The specimen was tested for 19 days. The test was 

monitored frequently for preventing any potentiation 

abnormality in the progression of the test. Visual inspection 

of the plate was also conducted regularly every 1-3 days 

using microscopic and digital large-scale photographs. A 

Dino-Lite digital microscope with maximum magnification 

of 184X was utilized for taking the microscopic pictures. 

The solution and tube were removed for taking pictures and 

checking the status of crack formation and extension. The 

test was continued by replacing the solution and tube on the 

surface. 

 

 

3. Data analysis method 
 

The steel plate was continuously monitored for 19 days. 

The AE data was initially filtered to delete suspicious and 

non-genuine data. Then, unsupervised pattern recognition 

was conducted on the data acquired by the broadband 

sensors considering the frequency-energy based features. 

The classified data was localized using an interactive source  

 

 

location algorithm and modified time of arrival (TOA) of 

the events. Signal signatures for stress corrosion cracking 

were developed. The procedure is shown in Fig. 4. 

Furthermore, Incremental and Global b-value 

procedures were utilized for damage identification and 

quantification. A method based on b-value was developed to 

identify the damage stages during stress corrosion cracking. 

The analysis procedure is described in the following 

subsections. 

 

3.1 Filtering AE data 
 

The AE data contained extraneous signals in some 

channels due to faulty connections, and these were filtered 

according to the difference between genuine and false AE 

signals. Examples are shown in Fig. 5. Different filtering 

approaches were taken for AE data collected by broadband 

and resonant sensors since the noise level in the two types 

of sensors were different due to sensitivity and frequency 

response ranges. The false data has a much lower counts 

compared to the genuine data. Therefore, this feature was 

considered as the main criterion for filtering the data in this 

study. For broadband sensors, the AE data with counts to 

peak less than 18 were deleted. For resonant sensors, the AE 

signals with counts less than 10 were initially removed from 

the data. Then the AE signals with signal strength less than 

10,000 pVs and duration less than 300 µs were deleted. The 

waveforms of the filtered data were visually observed for 

further filtering. For the source location and pattern 

recognition purposes, only the AE events containing more 

than three hits were considered.     

  

3.2 Feature extraction and unsupervised pattern 
recognition 

 

The AE signals were transferred to the frequency 

domain by using the Fast Fourier Transform (FFT). The 

Nyquist frequency was divided by ten equal frequency 

bands. The area enclosed in each frequency band under the 

FFT spectrum was calculated and normalized to the total 

signal energy. The resulting values were considered as the 

frequency-energy based features. Therefore, each signal 

originally had ten frequency-energy based features. To 

classify the data, it is usually better to reduce the number of 

features or delete the features with the highest correlation. 

Principal Component Analysis (PCA) was employed to 

reduce the redundancy in the data features and transfer the 

data to a new coordinate. In the PCA, the eigenvalue  

 

Fig. 4 Data analysis procedure 
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analysis was conducted on the covariance matrix of AE data 

with frequency-energy based features. The resulted 

eigenvectors were principal components (PC). Eigenvalues 

attributed to each principal component were descending 

sorted and normalized to the total value. 

The principal components with the highest percentage of 

eigenvalues were selected as an input matrix for the 

classifier. In this study, the first four principal components 

were selected to represent 93% of the information in the AE 

data with the original frequency-energy based features. In 

other words, the first four principal components accounted 

for 93% of variance in the data set. Therefore, the first four 

principal components were considered as the data features, 

and an input matrix for clustering algorithm included AE 

signals with four PCs (four features). An agglomerative 

hierarchical algorithm (Tan et al. 2018) was used as an 

unsupervised pattern recognition method for classifying the 

AE data. The algorithm calculated the Euclidian distances 

between the input features for all observations (AE signals). 

The result was presented as a proximity matrix. The data 

was linked in pairs according to the calculated distances in 

the proximity matrix and Ward’s method (Murtagh and 

Legendre 2014). The results were the new groups of data, 

which were called “objects”. The same procedure was 

repeated and new groups were merged until, at the end, a 

single cluster including all data was formed. The more 

detailed information about feature extraction and pattern 

recognition methods are presented in (Soltangharaei et al. 

2018).    

 
3.3 Continuous wavelet transform 
 

To better present the signal signatures in terms of time 

and frequency, the continuous wavelet transform (CWT) 

was utilized. CWT presents the time series in a high time  

 
 

resolution for the high-frequency components and a high-

frequency resolution for the low-frequency components 

(Suzuki et al. 1996). The CWT was calculated using the 

following equation:  

𝐶𝑊𝑇(𝑎, 𝑏) = ∫𝑆(𝑡) ∗ |𝑎|−0.5𝛹 (
𝑡 − 𝑏

𝑎
)𝑑𝑡 (1) 

Where a is the scale parameter and controls the 

frequency calculation of a signal, and b is the shift 

parameter, which controls the movement of wavelets 

through the signal in the time domain. S(t) is a time history 

signal. The wavelet coefficients are calculated by 

convolution of wavelets through a signal. The second part 

of the Eq. (1) (𝛹𝑎,𝑏(𝑡) = |𝑎|−0.5𝛹 (
𝑡−𝑏

𝑎
) ) refers to the 

wavelets. The mother wavelet in this study is a Gabor 

wavelet, which is based on a Gaussian function (Suzuki et 

al. 1996). The CWT was conducted using AGU-Vallen 

Wavelet Software produced by the Vallen Systeme 

Company.  
 

3.4 Modification of TOA and source location 
algorithm 

 

An iterative algorithm was coded and utilized for 
estimating the source locations of AE data recorded during 
the experiment. Before applying the algorithm on the data, 
new travel times for the signals were calculated using the 
Akaike Information Criterion (AIC) for a better estimation 
of motion initiations (Akaike 1998, Carpinteri et al. 2012). 
The AICs of the signals were calculated by using the 
following equation (Carpinteri et al. 2012):    

𝐴𝐼𝐶(𝑡𝑤) = 𝑡𝑤log⁡(𝜎
2(𝑆(1⁡𝑡𝑜⁡𝑡𝑤))

+ (𝑛𝑤

− 𝑘𝑤) log (𝜎
2 (𝑆((1 + 𝑡𝑤)⁡𝑡𝑜⁡𝑛𝑤)))) 

(2) 

 

Fig. 5 Genuine and extraneous AE data 
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Fig. 6 Time of arrival calculation 

 

 

Fig. 7 Sensor layout 

 

 

The equation is referred to as “AIC-picker”. A 

windowed section of a signal, which contains signal 

initiation, is usually considered for AIC calculation. The last 

point of the windowed signal is denoted by nw and S is the 

signal amplitude values. tw is the times in the windowed 

signal, which ranges from 1 to nw . 𝜎2(𝑆(1⁡𝑡𝑜⁡𝑡𝑤)) is the 

variance of signal voltages from the beginning of the signal 

to the desired time (tw) and 𝜎2 (𝑆((1 + 𝑡𝑤)⁡𝑡𝑜⁡𝑛𝑤)) is the 

variance of signal voltages from tw+1 to 𝑛𝑤. The minimum 

AIC values show an initiation of p-wave. 

Most of the AE data recorded during stress corrosion 

cracking tests were weak. Therefore, the threshold method 

did not show the real TOAs of the signals. AIC was used in 

this study to calculate the more realistic TOAs of signals to 

improve the source location results. An example of a signal 

is presented in Fig. 6. As seen in the figure, the threshold 

could not capture the TOA of the signal because the initial 

part of the signal is very weak and falls below the threshold.  

After modification of the TOAs, the resulting values 

were used for source location. The sensor layout is shown 

in Fig. 7. The sensors are labeled from S1 to S8. The sensor 

types are written inside the circles. 

Table 1 Sensor coordinates 

Sensor X (mm) Y (mm) 

S1 57 25 

S2 159 76 

S3 262 51 

S4 235 229 

S5 159 254 

S6 83 279 

S7 57 76 

S8 267 274 

 

 

The coordinates of the sensors are presented in Table 1. 

A source location algorithm was coded to minimize the 

difference between observed and calculated TOAs (Ge 

2003). The least-squares method was used for optimization 

(Dennis Jr 1978)  

A second derivative of AIC (Eq. 2) (Maeda 1985, 

Carpinteri et al. 2012) was utilized to select the best signals 

for the source location. The equation (Carpinteri et al. 

2012) is as follows: 

𝐷𝐷 = (𝐴𝐼𝐶(𝑡𝑚𝑖𝑛 − 𝛿𝑡) + 𝐴𝐼𝐶(𝑡𝑚𝑖𝑛 + 𝛿𝑡)
− 2𝐴𝐼𝐶(𝑡𝑚𝑖𝑛))/𝛿𝑡

2 (3) 

where tmin is the time in a signal corresponding to the 

minimum AIC (TOA). 𝛿𝑡 is the small time interval, which 

is considered before and after tmin  for the calculation of DD 

(Carpinteri et al. 2012). In this study 𝛿𝑡 is assumed to be 

15 µs. The first four or three largest DD for each event were 

selected for the source location. 
 

3.5 b-value analysis 
 

b-value analysis is a method based on Gutenberg-

Richter equation (Rao and Lakshmi 2005) in the seismology 

field, which indicates the occurrence frequency versus 

magnitudes of earthquakes in one region. It states that 

earthquakes with large magnitudes occur less frequently. A 

similar concept has been utilized in acoustic emission, and 

the Gutenberg-Richter equation was modified ((Rao and 

Lakshmi 2005)) as follows: 

𝐿𝑜𝑔𝑁 = 𝑎 − 𝑏(
𝐴

20
) (4) 

where N is the number of AE hits with amplitudes more 

than A. The AE signals with larger amplitudes are expected 

to be less frequent than the signals with the lower 

amplitudes. The relationship between the logN and 

amplitude (A) is linear or close to linear. Therefore, linear 

regression is used to calculate a and b. The smaller b-values 

show a higher chance of damage.  

In this study, two approaches were considered for b-

value calculation. The first approach is named “Incremental 

b-value”. In this method, the whole data (hits) was divided 

by the desired increments and b-values were calculated in 

each increment. N in Eq. (4) for the Incremental b-value is 

the number of AE hits with amplitudes more than A in each 

increment. 
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The second approach is named “Global b-value”. In this 

method, the b-values were calculated by considering all 

data from the beginning of the test to the desired experiment 

times. N in Eq. (4) in the Global b-value is the number of 

AE hits with amplitudes more than A, which is calculated 

by considering all AE data from the beginning of test to a 

desired monitoring time. 

Furthermore, the R2-value associated with each Global 

b-value was also calculated using the following equation: 

𝑅2 = 1 −
∑ (𝑦̂𝑖 − 𝑦𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

 (5) 

where 𝑦̂𝑖 is the estimated value of logN for an ith point 

by using the fitted line and 𝑦𝑖  is the real value of logN for 

the ith point. 𝑦̅  is the average value of logN. Index n 

denotes the last desired data to calculate the b-value.  

The modified version of b-value was also developed by 

using signal strength instead of amplitude. The relationship 

between log(Signal Strength) and logN was not linear. 

Therefore, the relationship between log(Signal Strength) 

and N was considered. The relationship resulted in a bi-

linear behavior. The R2-values were also calculated by 

considering the log(Signal Strength) and N relationship. 

 

 

4. Results and discussion 
 

The AE data was filtered according to the procedure 

described in section 3.1. The filtered AE data for both 

resonant and broadband sensors were shown in Fig. 8. Both 

amplitude and cumulative signal strength (CSS) are 

illustrated in the figure. There is a big jump in the CSS 

curve around the 8th day. Moreover, smaller jumps in the 

CSS curve can be observed earlier than that. The sudden 

increase in the CSS curve is usually attributed to crack 

formation or damage progression.  

The steel plate was visually inspected. The pictures were 

taken at 0 (prior to the experiment), 6, and 19 days after 

initiation of the experiment as shown in Fig. 9. No visible 

crack was observed before the 6th day of the experiment, 

whereas some AE events were recorded during the first six 

days. The first visible crack was observed at 9 days of the 

test as shown in Fig. 10. A major jump in CSS was 

observed at around 8 days, which approximately coincides 

with the occurrence of the first visible crack. The events 

during this jump can be attributed to macro-crack initiation 

during the SCC process. 

A visible crack (macro-crack) was observed along the 

central (the tensile) axis of the plate after 19 days (Fig. 9  

 
Fig. 8 Filtered AE data 

 

 
(a) At 0 day 

 
(b) At 6 days 

 
(c) At 19 days 

Fig. 9 Photos of the notch at different test days 
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and Fig. 10). It measured approximately 50.8 mm (2 inches) 

in length, which included cracks on either side of the notch. 

The crack width was measured using microscopic pictures 

and proved to be a maximum of 11.6 µm wide at the edge 

of the notch and 9.5 µm at the widest part of the crack. 

 
4.1 Pattern recognition and signal signatures  
 

The AE data was classified by using an agglomerative 

hierarchical algorithm and frequency-energy features as 

described in section 3.2. The dendrogram and the data 

presentation in the principal components (PC) are shown in 

Fig. 11. The data was grouped by upside-down U-shaped 

links as shown in the dendrogram, and the height 

differences between the branches show the distance 

between the merged data sets. The vertical axis in Fig. 11a 

presents the link heights calculated by using Euclidian 

distance and Wards algorithm as described in section 3.2. 

The vertical axis of Fig. 11a is unitless, since the original 

features used in the PCA and unsupervised pattern 

recognition algorithm were normalized. The values on the 

horizontal axis in Fig. 11a are the labels related to the 

original data and the subsets that resulted from the original 

data. The data was classified into three clusters (Cluster 1, 

Cluster 2, and Cluster 3). The red line depicts the desired 

cluster level in the data. Moreover, the data are presented in 

the PC space as shown in Fig. 11b. The corresponding 

values for each dot do not have any unit due to the reason 

mentioned earlier. 

The frequency-energy distributions of AE signals for the 

three clusters are shown in Fig. 12a. Cluster 1 has the 

highest energy contribution (29%) in the frequency band of 

0-100 kHz among the clusters. However, the energy 

distribution in this cluster looks uniform at the other 

frequencies. Cluster 2 has 45% of its energy in the 

frequency range of 100-200 kHz. Cluster 3 has 45% of its 

energy in the frequency range of 150-300 kHz. Average 

values of parametric features for the hits of each cluster 

have also been shown in Fig. 12b. In the figure, “Time” 

refers to the average TOAs for the hits. The times of 

occurrence of hits attributed to a specific cluster were 

averaged and presented as “Time” in the figure. In other 

words, “Time” in Fig. 12b indicates the distribution of AE 

data for each cluster in terms of monitoring time (19 days). 

Accordingly, the signals in Cluster 1 and 3 appear averagely 

later than Cluster 2 as seen in Fig. 12b.  

Rise Time refers to the time from signal initiation to the 

time corresponding to the maximum signal amplitude. 

Counts to peak is referred to the number of signal crossing 

with the threshold, calculated from signal initiation to the 

maximum signal amplitude. Counts is the number of signal 

crossing with the threshold through the entire signal. 

Duration is referred to the time that signal voltages exceed 

the threshold. Amplitude is referred as the maximum 

voltage value in a signal, shown either as voltage or dB 

(Decibel). Signal strength is mathematically defined as the 

integral of the rectified voltage signal over the signal 

duration. The average signal strength of Cluster 3 is much 

more than the two others. The large signal strength values 

of Cluster 3 are mainly due to its large duration rather than 

its large amplitude as shown in Fig. 12b. Frequency 

Centroid is resulted from calculating the geometric centroid 

of area under FFT spectrum. Peak Frequency is the 

frequency attributed to the maximum FFT magnitude for a 

signal. RA value (Rise Angle) is the ratio of risetime to 

amplitude, which has the lowest average value for Cluster 

1and the largest for Cluster 2.  

The results of the classification are presented in terms of 

amplitude and CSS for the three clusters in Fig. 13. As seen, 

Cluster 3 contributes to a large portion of acoustic emission 

energy released during the SCC process. This was 

previously observed in the average CSS of this cluster in 

Fig. 12b. As mentioned, a significant jump in CSS occurred 

at 8 days, which is close to the time when the first visible 

crack was observed. The jump is caused by Cluster 3 (green 

color) as seen in Fig. 13.  

Source location was conducted by determining TOAs of 

the hits using AIC and choosing the best hits for source 

location according the procedure outlined in section 3.3. 

The results are presented in Fig. 14 at the experiment times 

of 4 days, 9 days, and 19 days. The located events were 

indicated according to the assigned clusters. Small black 

 
(a) At 9 days 

 
(b) At 19 days 

Fig. 10 Microscopic pictures of the notch 
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Visual crack propagation
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Fig. 13 Amplitude and CSS versus time for classified 

 

 

circles indicate the sensors and their labels are shown next 

to the sensors. The sensor types (broadband (WDI) and 

resonant (R6I)) are labeled. The large circle with a dashed 

line indicates the location of the solution tube. The visual 

crack is also presented in Fig. 14c. The region inside the 

data large circle was exposed to the corrosive condition. 

Therefore, it can be concluded that the AE events located 

inside the circle have a high chance of being related to the 

SCC. The first visible crack was observed at the 9 th 

experiment day. However, there are several events located 

before that time around the notch as seen in Fig. 14. This 

supports the observation that AE is sensitive and capable of  

 

capturing the hits attributed to microcracks caused by SCC 

(before a visible defect appears). The percentage of the 

events for Cluster 3 increases during the experiment. The 

percentages of events for Cluster 3 are 33%, 46%, and 57% 

for 4 days, 9 days, and 19 days, respectively. Therefore, 

most located events are from Cluster 3. As seen in Fig. 14b, 

the event (green square point) at the right site of the notch 

appeared at the time close to the 9th day, when the first 

visible crack was observed in the same location. This event 

is from Cluster 3.  

An example of signals for each cluster is shown as the 

waveforms and wavelet contours in Fig. 15. All the signals 

in Fig. 15 are normalized to their maximum amplitudes to 

show their waveforms clearly. However, the wavelet 

coefficients are scaled to the maximum coefficient, which is 

related to the signal in Cluster 3 (Fig. 15c) to show the 

energy levels of the signals. The signals in Cluster 3 have a 

large energy concentration (between 200 to 300 kHz) as 

shown in Fig. 15c. They have larger durations and signal 

strength compared to the other clusters. They have the 

largest acoustic emission energy contribution during the 

SCC process and their AE energy contribution significantly 

increases around an occurrence of the first visible crack. 

Furthermore, an event from Cluster 3 occurred at the 

location of the first visible crack and in the time close to the 

9th day when the first visible crack was observed. Therefore, 

the signals in Cluster 3 may be mainly associated with the 

macrocrack formation. 
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(a) Dendrogram 

 
(b) PCA result 

Fig. 11 Cluster results 
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Fig. 12 (a) Average energy distribution of data in frequency domain; (b) Normalized AE parametric features 
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The signals in Cluster 2 have, on average, a larger 

energy concentration than other clusters for the frequencies 

less than 200 kHz as observed in Fig. 15b. The signals in 

Cluster 1, as mentioned before, have the largest energy 

concentration for the frequencies less than 100 kHz and 

almost uniform energy distribution in the other frequency 

ranges. Clusters 1 and 2 have much smaller AE energy 

contributions during the stress corrosion cracking process, 

and they include very weak signals. They can be mostly 

related to micro-crack formations and crack propagations.  

 

4.2 Damage identification using b-value analysis 
 

As mentioned in section 3.5, two b-values were 

calculated in this study; Incremental b-value and Global b-

value. For the Incremental b-value, the b-values were 

calculated for each 30 hits. The global values were 

calculated based on the data up to 3, 5, 8, 9, 10, 12, and 19 

 

 

days to include the entire time of the experiment and match 

the times attributed to the Incremental b-values. The results 

are shown in Fig. 16. In both methods, an occurrence of the 

first visible crack can be observed to be associated with the 

minimum b-value. Incremental b-values after the first 

visible crack are larger than the values before the first 

visible crack and do not consider the cumulative 

characteristic of damage. However, Global b-values 

separates the SCC process into two regions; before the 

visible crack and after the visible crack (Fig. 16b). This 

parameter seems to be more reliable than the Incremental b-

value for damage identification and quantification of the 

steel plate affected by SCC. 

Coefficients of determination or R2-values were 

calculated using Eq. 5 for all calculated Global b-values and 

are presented in Fig. 17. There is a clear trend in the 

calculated R2-values in terms of time. Before the first 

visible crack, the coefficients of determination are  

 
(a) 0 to 4 days 

 
(b) 0 to 9 days 

 
(c) 0 to 19 days 

 

Fig. 14 Source location results 
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(a) Cluster 1 

  

(b) Cluster 2 

  
(c) Cluster 3 

Fig. 15 Waveforms and wavelet contours for clusters 

 
(a) 

 
(b) 

Fig. 16 b-value results. (a) Incremental b-value; (b) Global b-value 

 

Fig. 17 R2-value calculated for Global b-values 
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increasing because a larger amount of data was generated 

and made the coefficients of determination closer to 

linearity. At the first visible crack, AE events with larger 

amplitudes were generated, which were outliers from the 

previous AE data. These outliers caused the amplitude (A) 

versus logN to become farther from the linear relationship. 

This change in the coefficients of determination can be 

observed in Fig. 17 after the first visible crack. The change 

rate is larger around the first visible crack and then 

decreases as the SCC continues.  
The b-value was modified to be used for signal strength 

instead of amplitude. The relationship between log(Signal 
Strength) versus N is used to conduct linear regression and 
the AE data up to the desired time was considered for 
calculation. The log (Signal Strength) versus N distributions 
are illustrated in Fig. 18 for 3, 8, and 19 days. As seen in 
Fig. 18, the relationship between log(Signal Strength) and 
Number of hits (N) are bilinear. Linear regression analysis 
was conducted on the second branch of the curves because 
the second branch is related to the stronger signals, which 
can be associated with the prominent damage in the plate. 
The R2-values for 19 days are lower than the values before 
8 days. 

The variation of R2-values in terms of experiment time 
is shown in Fig. 19. A similar trend, like that for Global b-
value (Fig. 17), is observed in Fig. 19. The coefficients of 
determination increase to a point corresponding to 8 days 
and then decreases abruptly after this point, which can be 
related to the first visible crack. The decreasing rate in R2-
values after the first visible crack declines as the SCC 
continues. The calculated R2-values based on the signal 
strength show a larger variation from the maximum to 
minimum than R2-values based on the amplitude. Therefore, 
this index can also be utilized for damage identification and 
quantification. 

 

 
Fig. 19 R2-value calculated for linear regression of Log 

(Signal Strength) versus number of hits 

 
 
5. Conclusion 

 

In this paper, the stress corrosion cracking (SCC) 

process of a steel plate was studied using AE. The 

frequency-energy based features were derived from the AE 

signals and utilized as an input matrix in an agglomerative 

hierarchical algorithm for an unsupervised clustering 

purpose. The clustered AE data were localized, and the 

signal signatures of the AE data associated with the damage 

in the steel plate were identified. Global and incremental b-

value analyses were conducted for the identification of 

cracking stages. The main conclusions are as follows: 

•  Cluster 3 has the largest AE energy contribution 

during the experiment. Moreover, most of the located 

events are associated with Cluster 3. The signals in Cluster 

3 can be attributed to the major damage due to SCC in the 

steel plate. Their frequency ranges concentrate mostly 

between 150-300 kHz. 
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Fig. 18 Linear regression of Log (Signal Strength) versus N distributions for different experiment times 
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•  Global b-values calculated based on amplitude 

illustrate a more reliable method than incremental b-values 

for both identification and quantification of damage caused 

by SCC. Because Global b-values can identify both 

initiation of major damage and different stages (micro-stage 

and macro stage) of damage in the steel plate. In other 

words, the Global b-value index considers the cumulative 

characteristic of damage. 

•  The damage stages and progression in the steel plate 

caused by the stress corrosion cracking process are 

indicated by R2-values calculated by conducting linear 

regression. This factor can also be used for damage 

identification and quantification caused by stress corrosion 

cracking.  

•  The relationship between log(Signal Strength) and 

the number of hits exceeding a desired Signal Strength 

value (N) is bilinear. A tale branch of the curve can be used 

for linear regression and calculating the R2-values. A similar 

trend was achieved as the one for Global b-value. However, 

the variation of R2-values calculated based on signal 

strength is higher than the R2-values for Global b-values. 

Therefore, this index shows differences in the damage 

stages more clearly than the R2-values of the Global b-value 

analysis. This index can also be utilized as a damage index 

for the identification and quantification of the defects due to 

SCC. 

This research will continue to conduct a test on a full-

scale steel plate, which resembles the real size of the dry 

storage system. Some conditions (limitation in the number 

of sensors and sensor locations) for structural health 

monitoring of large-scale structures such as the DCSSs are 

different than small-scale structures and therefore is the 

subject of future research. 
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